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Abstract
Searches through biological databases provide the primary motivation for
studying sequence alignment statistics. Other motivations include physical
models of annealing processes or mathematical similarities to, e.g., first-
passage percolation and interacting particle systems. Here, we investigate
sequence alignment statistics, partly to explore two general mathematical
methods. First, we model the global alignment of random sequences
heuristically with Markov additive processes. In sequence alignment, the
heuristic suggests a numerical acceleration scheme for simulating an important
asymptotic parameter (the Gumbel scale parameter λ). The heuristic might
apply to similar mathematical theories. Second, we extract the asymptotic
parameter λ from simulation data with the statistical technique of robust
regression. Robust regression is admirably suited to ‘asymptotic regression’
and deserves to be better known for it.

PACS numbers: 02.50.Ga, 87.10.+e, 87.15.Cc

1. Introduction

Computational tools for sequence alignment are indispensable to modern molecular biology.
Nowadays, the functional, structural and evolutionary relationships of a novel protein or nucleic
acid sequence are often inferred by finding similar sequences of known function in a database.
Because subsequences of a biological sequence (e.g., a protein or nucleic acid) often contribute
to its functionality, a ‘local alignment’, which compares subsequences (Smith and Waterman
1981), is often more sensitive in determining relationships than a ‘global alignment’, which
compares entire sequences (Needleman and Wunsch 1970).
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Local alignment is therefore more important in database applications than global
alignment (Altschul et al 1990, 1997, Schaffer et al 2001). From a physical perspective,
however, both global and local alignments are interesting, because they can provide
approximate models for different types of annealing, e.g., between either entire molecules
of DNA or between DNA subsequences (Waterman et al 1987). The mathematics of sequence
alignment draws heavily from path optimization, as follows (Needleman and Wunsch 1970).

Let A = A0A1A2 . . . and B = B0B1B2 . . . be two infinite sequences drawn from a finite
alphabet L, e.g., the amino acid alphabet {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y} or the nucleotide alphabet {A, C, G, T}. Let S : L × L �→ R denote a ‘scoring matrix’.
In a physical application, S(a, b) represents free energy dissipated when, e.g., nucleic acids
a and b from two different DNA molecules form hydrogen bonds. In database applications,
S(a, b) quantifies some type of similarity between a and b, e.g., the PAM and BLOSUM
scoring matrices quantify the evolutionary similarity between two amino acids (Dayhoff et al
1978, Henikoff and Henikoff 1992).

The alignment graph � of the sequence-pair (A, B) is a directed, weighted lattice graph
in two dimensions, as follows. The vertices v of � are non-negative integer points (i, j).
(Below, ‘:=’ denotes a definition, e.g., the natural numbers are N := {1, 2, 3, . . .}; i, j , k, m,
n and g are integers throughout the paper.) Three sets of directed edges e come out of each
vertex v = (i, j): northward, northeastward and eastward. One northeastward edge goes into
(i + 1, j + 1) with weight S(Ai, Bj ). For each g > 0, one eastward edge goes into (i + g, j)

and one northward edge goes into (i, j + g); both are assigned the same weight −�(g) < 0.
The deterministic function � : N �→ (0,∞) is called the ‘gap penalty’. Affine gap penalties
�(g) = a + bg are typical in database searches.

A directed path π = (v0, e1, v1, e2, . . . , ek, vk) in � is a finite, alternating sequence of
vertices and edges that starts and ends with a vertex. For each i = 1, 2, . . . , k, the directed
edge ei comes out of vertex vi−1 and goes into vertex vi . We say that the path π starts at v0

and ends at vk .
Denote subsequences of a sequence A by A[i, m] = AiAi+1 . . . Am. Every gapped

alignment of the subsequences A[i, m] and B[j, n] corresponds to exactly one directed path
that starts at v0 = (i, j) and ends at vk = (m, n) (see figure 1). The alignment’s score is the
‘path weight’ Wπ := ∑k

i=1 W(ei).
Define the ‘global score’ Sij := maxπ Wπ , where the maximum is taken over all paths π

starting at v0 = (0, 0) and ending at vk = (i, j). The paths π starting at v0 and ending at vk with
weight Wπ = Sij are ‘optimal global paths’ and correspond to ‘optimal global alignments’
between A[0, i] and B[0, j ]. Define the ‘corner maximum’ Sn := Snn, the ‘edge maximum’
En := max{max0�i�n Sin, max0�j�n Snj }, and the ‘global maximum’ M := supn�0 En. (The
single subscript in Sn and En indicates that the variables correspond to a square [0, n]× [0, n],
and not a general rectangle [0,m] × [0, n].)

Define also the ‘local score’ Ŝij := maxπ Wπ , where the maximum is taken over
all paths π ending at vk = (i, j), regardless of their starting point. Define the ‘local
maximum’ M̂mn := max0�i�m,0�j�n Ŝij . The paths π ending at vk = (i, j) with
local score Wπ = Ŝij = M̂mn are ‘optimal local paths’ corresponding to the ‘optimal
local alignments’ between subsequences of A[0,m] and B[0, n]. ‘Ungapped local alignment’
is the case where �(g) ≡ ∞ identically, because then no optimal local path includes a
northward or eastward edge, i.e., as the terminology suggests, gaps are absent from optimal
ungapped local alignments.

Now, we introduce randomness. Choose each letter in the sequences A and B randomly
from a fixed distribution on the alphabet L. Under this ‘independent letters’ model, each
random optimal global alignment score can be viewed as a variant type of first-passage
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(a) 

T -16 -12 -14 -7 -3 4 2 0 1 2

T -14 -10 -12 -5 -1 6 4 5 0 4
A -15 -8 -10 -6 1 8 9 4 2 9

G -13 -6 -5 -4 3 13 8 6 4 2
A -11 -1 -6 -2 8 3 1 -1 -3 4
T -6 -11 -4 3 -2 -4 -3 -2 -1 -6
G -13 -9 -2 -4 -3 1 -1 3 -2 -4
G -11 -7 0 1 -4 3 -2 -1 -6 -8

C -9 -5 5 0 -2 -4 -6 -8 -10 -12
A -4 0 -5 -7 -6 -11 -13 -15 -17 -16

T A C T A G C G C A

(b) 

↓

↓

T 5 1 0 6 2 9 7 5 6 7
T 5 1 1 6 4 11 9 10 5 9
A 0 5 1 2 6 13 14 9 7 14
G 0 5 6 1 8 18 13 11 9 7
A 0 10 5 3 13 8 6 4 2 9
T 5 0 1 8 3 1 2 3 4 2
G 0 0 3 1 2 6 4 8 6 1
G 0 0 5 6 1 8 3 10 5 3
C 0 0 10 5 3 1 5 0 5 0
A 0 5 0 0 5 0 0 0 0 5

T A C T A G C G C A

Figure 1. Gapped alignment scores and the corresponding directed paths for two subsequences
A[0, 10] = TACTAGCGCA and B[0, 10] = ACGGTAGATT of sequences drawn from the
nucleotide alphabet {A, C, G, T}. Both figures use the standard nucleotide scoring matrix, with
S(a, b) = 5 if a = b and −4 otherwise, and the affine gap penalty �(g) = 3 + 2g. The
vertex (i, j) is in the northeast corner of the cell (i, j), with the origin (0, 0) at the southwest
corner of each figure. In (a), the cell (i, j) displays the global score Sij , calculated from
equation (3). The optimal global path ending at the point (10, 8), e.g., consists of 12 edges,
in the following order: 1 east of length 1, 2 northeast, 1 north of length 2, 3 northeast, 1
east of length 3, and 1 northeast. The optimal global path corresponds to the global sequence
alignment of A[0, 10] and B[0, 8], TAC− −TAGCGCA and −ACGGTAG− − −A.. The global
score S10,8 = −5 + 5 + 5 − 7 + 5 + 5 + 5 − 9 + 5 = 9 is the sum of the corresponding edges
and represents the path of greatest weight starting at (0, 0) and ending at (10, 8). The six most
northeasterly corner maxima are S5 = −2, S6 = 3, S7 = 8, S8 = 4, S9 = 0, S10 = 2, the
corresponding edge maxima are E5 = 3, E6 = 8, E7 = 13, E8 = 9, E9 = 6, E10 = 9, and the
global maximum M for A and B is no less than 13, the largest global score shown. In (b), each cell
(i, j) displays the corresponding local score Ŝij , which can be calculated from a recursion similar
to equation (3) (Smith and Waterman 1981). A local score of 0 indicates that no path of positive
weight ends at the corresponding point. The optimal local path ending at the point (6, 7), e.g.,
consists of 7 edges, in the following order: 2 northeast, 1 north of length 2, and 3 northeast. The
optimal local path corresponds to the local sequence alignment of, e.g., A[0, 10], and B[0, 10],
AC− −TAG and ACGGTAG. The local score Ŝ6,7 = 5 + 5 − 7 + 5 + 5 + 5 = 18 is the sum of the
corresponding edges and represents the path of greatest weight ending at (6, 7). The score is also
the greatest weight of any path within the rectangle displayed, so it also corresponds to the local
maximum score M̂10,10 = 18.
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percolation time. Under certain conditions, the distribution of the random local maximum
M̂mn approximates the following Gumbel extreme value distribution (Galombos 1978, Aldous
1989):

P(M̂mn > y) ≈ 1 − exp[−Kmn exp(−λy)]. (1)

The Gumbel distribution in equation (1) has ‘location parameter’ K and ‘scale parameter’ λ.
By default, BLASTP, the popular BLAST computer program for searching protein

databases, uses the BLOSUM62 scoring matrix, the affine gap penalty �(g) = 11 + g,
and the empirically determined Robinson and Robinson amino acid frequencies for its random
letter frequencies. Our simulations generally adhered to the BLASTP defaults, for which
the Gumbel parameters are known to extraordinary accuracy: λ ≈ 0.267 and K ≈ 0.041
(Altschul et al 2001).

The Gumbel distribution in equation (1) has been the subject of intense research effort
for about 15 years. For ungapped local alignment (i.e., for �(g) ≡ ∞), a rigorous
proof of equation (1) yields formulae for the Gumbel parameters λ and K (Dembo et al
1994). For gapped local alignment, few rigorous results are available, although some
approximate analytical studies are extant (Mott 1999, Mott 2000, Siegmund and Yakir 2000,
Storey and Siegmund 2001). In the absence of a rigorous theory for gapped local alignment,
computer simulations confirm the validity of equation (1) (Mott 1992, Waterman and Vingron
1994, Altschul and Gish 1996, Olsen et al 1999); in the absence of formulae, they also provide
estimates of λ and K (Smith et al 1985, Collins et al 1988, Mott 1992, Mott and Tribe 1999).

Presently, the BLAST program offers its users a narrow choice indeed in their alignment
parameters, because it needs to pre-compute the Gumbel parameters λ and K offline. If
λ and K could be computed online (in, say, less than 1 s) before searching a database, a
user’s alignment parameters could be arbitrary. Recently, much research has been directed
accordingly, towards speeding the estimation of the Gumbel parameters.

Several methods of estimating λ and K improve on crude simulation of local alignments,
e.g., the ‘declumping method’ (Waterman and Vingron 1994) and the ‘island method’
(Olsen et al 1999). Both methods are based on ‘islands’, a concept explained elsewhere
with mathematical rigor (Spouge 2004). Unfortunately, the methods still require minutes to
estimate the Gumbel parameters, too slow for online computation.

BLAST uses only large values of y for the tail in equation (1), so errors in λ have a
much greater practical impact than errors in K . The relative errors in λ generally must be less
than 1% to 4%; the relative errors in K , less than about 10%. The rigorous theory of global
alignment (Arratia and Waterman 1994) shows, however, that

λ = lim
y→∞

−ln P(M > y)

y
. (2)

Thus, if K is considered inessential, simulations of global alignment can determine λ alone
(Bundschuh 2002b). At comparable accuracies for λ, global alignments use sequence lengths
m = n ≈ 100; local alignments, m = n ≈ 600 (Altschul et al 2001). Consequently,
Bundschuh’s idea of using global alignment to estimate λ speeds computation by a factor of at
least 5. Bundschuh also makes in passing several interesting conjectures about gapped global
alignment.

This paper modifies Bundschuh’s estimate for λ by modelling gapped global alignment
heuristically as a Markov additive process (MAP) (Cinlar 1975, Asmussen 2003). Although
it is really just a loose analogy, the heuristic MAP model generalizes Bundschuh’s estimate
for λ, reducing noticeably the sequence length required for a given accuracy in λ. It also gives
some quantitative insight into Bundschuh’s conjectures.
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Sequence alignment is a physical model for the annealing of nucleic acids and has
mathematical analogies to familiar models of condensed matter like first-passage percolation
or interacting particle systems (Bundschuh 2002a, Uchiyama et al 2004). MAP analogies
might be extended to these models, as well. In addition, our statistical techniques have some
general interest. We need to extract an asymptotic parameter, the Gumbel scale parameter λ,
with an asymptotic regression. Usually, asymptotic parameters are extracted from simulation
results only after establishing arbitrary cut-offs, to ensure that a regression considers only data
from the asymptotic regime. In extracting λ here, however, we use the statistical technique
of robust regression, which removes any need for arbitrary cut-offs. Our results suggest that
robust regression might be generally useful for asymptotic regression.

The layout of this paper is as follows. Section 2 presents our methods. Section 2.1 gives
our algorithm for computing the global score Sij . Section 2.2 heuristically models global
gapped alignment as a Markov additive process (MAP). The MAP model suggests several
new equations for the Gumbel scale parameter λ. Section 2.3 solves the new equations and
estimates the simulation error in their roots. Section 2.4 indicates that robust regression can
extract the asymptotic parameter λ from a series of finite estimates for λ. Section 3 presents
numerical results; and section 4, our discussion.

Generally, we present the three components of our paper (sequence alignment, Markov
additive processes and robust asymptotic regression) as independently as possible.

2. Methods

2.1. The standard global sequence alignment algorithm for affine gaps

For affine gaps �(g) = a + bg, the global score can be calculated with the recursion

Sij = max{Si−1,j−1 + S(Ai, Bj ), Cij ,Dij }, (3)

where

Cij = max{Si,j−1 − a − b, Ci,j−1 − b}, Dij = max{Si−1,j − a − b,Di−1,j − b}
and boundary conditions

S00 = 0, Si0 = S0i = −�(i) for i > 0, Ci0 = D0i = −∞ for i, j � 0

(Waterman 1995).

2.2. Markov additive process

Here, we present Markov additive processes (MAP) as a heuristic model for global sequence
alignment. The MAP model suggests several generalizations of Bundschuh’s estimate for λ

(Bundschuh 2002b). Because rigorous, general definitions of a MAP can be found elsewhere
(Asmussen 2003), the following gives a relatively informal description of the essentials
for our application. We use the standard asymptotic notation ∼, O and o (e.g., Erdélyi
(1956) p 5).

Imagine a Markov chain {Jn} on a finite state space J containing |J| elements. Let
P = ‖pij‖ denote the |J| × |J| transition matrix of {Jn}, so pij = P(Jn+1 = j |Jn = i)

for n = 0, 1, 2, . . .. For simplicity, assume that P is strictly positive, so pij > 0 for all
i, j = 1, 2, . . . , |J|. The Markov chain {Jn} then has a stationary distribution given by a
strictly positive 1 × |J| row vector π satisfying πP = π and π1 = 1, where 1 is the |J| × 1
column vector whose elements are all 1.
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Run the Markov chain {Jn}, and take its states as given. Now, consider another sequence
{Yn} of random variables, where the distribution of Yn is determined by the transition
Jn−1 → Jn of the Markov chain, i.e., Ym and Yn carry the same distribution if Jm−1 = Jn−1 = i

and Jm = Jn = j . In that case, let the generic (doubly subscripted) random variable Yij carry
the distribution that Ym and Yn share. (Note that although Ym and Yn carry the same distribution,
randomness can still give them different values.) The main random variables of interest in a
MAP are the sums Tn = ∑n

m=0 Ym for n = 0, 1, . . . , where Y0 = 0.
MAPs have the following heuristic analogy to global alignment. Identify the Markov

chain states Jn in the MAP with the vertices of � within the rectangle [0, n] × [0, n]. The
sum Tn in the MAP can then be identified with either Sn or En, whichever happens to be more
convenient. We make no pretence that the MAP analogy with global alignment is in any way
precise, but it leads to some interesting conjectures.

In the MAP, define the matrix Pθ = ‖pijE[exp(θYij )]‖, and let r(θ) be its spectral radius
(i.e., the maximum absolute value of any eigenvalue of Pθ ). The theory of MAPs states that the
equation r(λ) = 1 has a unique positive root λ > 0, and that the maximum M = maxn�0 Tn

satisfies the asymptotic equality P(M > y) ∼ c e−λy for some c > 0 as y → ∞. If Tn is
identified with En, M becomes identified with the global maximum in sequence alignment,
and the Gumbel scale parameter in equation (2) becomes identified with the root λ of the
equation r(λ) = 1.

We need just a little more MAP theory. Let the indicator function I[Jn = j ] equal
1 if Jn = j and 0 otherwise, so exp(θTn)I[Jn = j ] equals exp(θTn) if Jn = j and 0
otherwise. Then, E{exp(θTn)I[Jn = j ]|J0 = i} is the expectation of exp(θTn)I[Jn = j ] when
the starting state is J0 = i. Induction shows that the matrix moment generating function
‖E{exp(θTn)I[Jn = j ]|J0 = i}‖ equals Pn

θ , the nth power of the matrix Pθ . Thus, if the
Markov chain {Jn} starts in a state J0 with distribution γ, matrix algebra yields

E[exp(θTn)] = γPn
θ 1. (4)

Now, define Kn(θ) := ln(E[exp(θTn)]), the cumulant generating function of Tn. A
spectral (eigenvalue) decomposition of the matrix Pθ in equation (4) (Seneta 1981) suggests
that

Kn(θ) = n ln{r(θ)} + C0 + O(εn), (5)

where 0 � ε < 1 is determined by the magnitude of the subdominant eigenvalue of Pθ , and
C0 is a constant independent of θ and n. For 0 � m < n, we can accelerate the convergence
in equation (5) as n → ∞ by writing

ln

(
E[exp(θTn)]

E[exp(θTm)]

)
= Kn(θ) − Km(θ) = (n − m) ln{r(θ)} + O(εm). (6)

For m < n, let λmn denote the root of the equation

E[exp(λmnTn)] = E[exp(λmnTm)]. (7)

Because r(λ) = 1, a linear Taylor approximation around λ yields ln{r(λmn)} ≈
r ′(λ)(λmn − λ), so equation (6) becomes

(n − m)r ′(λ)(λmn − λ) = O(εm), (8)

i.e., with n − m fixed, λmn converges geometrically to λ as m → ∞.

2.3. Numerical schemes for estimating λ

Denote λmn by λ[S]
mn (or λ[E]

mn ), if Tn and Tm in equation (7) are replaced by Sn and Sm (or En

and Em). Bundschuh examined λ
[S]
0n (Bundschuh 2002b), i.e., the numerical scheme
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corresponding to

E[exp(λ0nSn)] = 1. (9)

He conjectured that λ0n = λ + Cn−1 + O(n−2), which is consistent with equation (8), where
λ0n − λ = {(n − 0)r ′(λ)}−1O(ε0) = O(n−1) for m = 0.

To estimate E[exp(θSn)], Bundschuh used importance sampling, basing it on the
known distribution of optimal subsequence pairs in so-called ‘hybrid sequence alignment’
(Yu and Hwa 2001). We estimate E[exp(θSn)] and E[exp(θEn)] for equation (7) with
Bundschuh’s importance sampling method. Details of the method can be found elsewhere
(Bundschuh 2002b).

All simulations used affine gap penalties �(g) = a + bg. For Sn, we followed Bundschuh,
who recommended zero boundary conditions (Sij = 0 for i = 0 or j = 0) to promote rapid
convergence. For En, however, we required that E[En] < 0, so we used the standard boundary
conditions (Si0 = S0i = −a − bi for i � 1).

To estimate λmn from simulations, define f (Tm, Tn; θ) := exp(θTn) − exp(θTm), with
N−1 ∑N

1 f (Tm, Tn; θ) being the average of f (Tm, Tn; θ) over N realizations. The random
root θ = �mn of

∑N
1 f (Tm, Tn; θ) = 0 is our estimate for λmn from the N realizations.

Let smn be the standard error of �mn. We calculated smn as follows. Expand N−1 ∑N
1

f (Tm, Tn; θ) in a Taylor series as far as the linear term and substitute θ = �mn:

0 = N−1
N∑
1

f (Tm, Tn;�mn) ≈ N−1
N∑
1

f (Tm, Tn; λmn)

+ (�mn − λmn)N
−1

N∑
1

f ′(Tm, Tn; λmn). (10)

In the final expression, approximate N−1 ∑N
1 f ′(Tm, Tn; λmn) ≈ E[f ′(Tm, Tn; λmn)],

introducing a relative error that vanishes in probability as N → ∞. Because

�mn − λmn ≈ −N−1

∑N
1 f (Tm, Tn; λmn)

Ef ′(Tm, Tn; λmn)
, (11)

square equation (11) and take expectations to derive the approximation in equation (12)
between the second and third expressions:

s2
mn := E(�mn − λmn)

2 ≈ N−1 E{[f (Tm, Tn; λmn)]2}
[Ef ′(Tm, Tn; λmn)]2

≈ N−1 E{[f (Tm, Tn;�mn)]2}
[Ef ′(Tm, Tn;�mn)]2

. (12)

The final approximation introduces another relative error that vanishes in probability. The
final expression is estimated directly from the simulation.

2.4. Robust regression method for λ

Let n̄ be the maximum sequence length in the simulations. We can produce estimates �mn ±
smn of λmn for 0 � m < n � n̄. From the data �mn ± smn, we want to extract an overall
estimate �∞ for λ := λ∞ := limm→∞ λmn. We could extract the estimate by establishing
(e.g., by eye) some ad hoc cut-off m, then defining �∞ as some weighted average of
{�mn : m � m < n � n̄}. Instead of introducing ad hoc cut-offs, however, we adapted the
statistical technique of robust regression to regress the asymptotic constant λ∞ systematically.

With an eye to generalizations in section 4, we now describe multivariate linear robust
regression (Ryan 1996). Consider a regression model y = Xβ + e, where X is a matrix of
independent (‘regressor’) variables; y, β and e are column vectors of appropriate dimension
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containing the dependent (‘response’) variables y, the fitted parameters β and the random
errors (‘residuals’) e. Denote the elements of, e.g., y by yi . Let s2

i := var yi = var ei be the
measure of dispersion; let e∗

i := ei/si be the ‘normalized residuals’.
Each of the three classes of robust regression estimators (M-estimators, bounded influence

estimators and high breakdown point estimators) has its own extensive literature. Here, we
consider M-estimators (Huber 1964, 1973). Given some ‘criterion function’ ρ (described
further below), the M-estimator β̂ solves the minimization problem min

∑
i ρ(e∗

i ), i.e.,

β̂ = arg min
∑

i

ρ(e∗
i ). (13)

The global minimum in equation (13) can be found by general global minimization methods
or by iteratively reweighted least-squares methods (Ryan 1996). Statistics favours the iterative
methods, because as a by-product, they estimate the covariance matrix cov β̂ = [cov(β̂i , β̂j )],
thereby assigning an error to every estimate. Because they can be trapped in local minima,
however, they require a judicious initial guess for β̂. We do not need iterative methods here,
because equation (12) already estimates our errors.

The derivative ψ = ρ ′ is called the ‘influence function’. Ordinary weighted least squares,
e.g., correspond to the linear influence function ψ(e∗) = e∗. Many influence functions have
been proposed (Montgomery et al (2001) p 388). The Andrews function is particularly well
suited to asymptotic regression: it is ψ(e∗) = sin(e∗/a) for e∗ ∈ [−aπ, aπ ] and 0 otherwise,
typically with a = 1.5 or 2 (Andrews 1974). For asymptotic regression, the Andrews function
with a = 2 was superior to the other established influence functions we tried (data not shown).

The superiority was predictable. Given a close approximation to the true regression line,
if a normalized residual is large, the corresponding point is probably not in the asymptotic
regime. Because the point’s apparent bias greatly exceeds its estimated error, it should not be
permitted to influence the asymptotic regression. In other words, if e∗

i > 2π , e.g., the point’s
influence should be ψ(e∗

i ) = 0, as in the Andrews function.
The criterion e∗

i > 2π for a = 2 gives large biases some influence on the regression.
Smaller values of a considerably roughen the graph of

∑
i ρ(e∗

i ), however, generating many
local minima. For our purposes, the value a = 2 seemed best (data not shown).

Since we wished to extract an estimate �∞ for λ := λ∞ := limm→∞ λmn from the data
�mn ± smn, we considered the (trivial) regression model y = 1β + e, where y is a column
vector consisting of the �mn in any order, 1 is a column vector whose elements are all 1, and
β = �∞ is the estimated Gumbel scale parameter λ∞. To avoid local minima, we derived the
robust estimate �∞ from equation (13) by direct global minimization (i.e., we formed a fine
mesh and tested the function values at each mesh point).

3. Numerical results

Figures 2 and 3 display some estimates of the Gumbel scale parameter λ in gapped local
alignment. The figures show results for the BLOSUM62 scoring matrix with the usual affine
gap cost �(g) = 11 + g for a gap of length g. Other common scoring matrices gave similar
results (data not shown).

Figure 2 compares the estimates for λ
[S]
(n−5)n and λ

[E]
(n−5)n from equation (7) to the estimate

for λ
[S]
0n from Bundschuh’s equation (9). The lag of 5 in λ(n−5)n was the best compromise

between rapid, geometric convergence and small standard errors (data not shown). Figure 2
displays the standard errors s(n−5)n in equation (12) as error bars. It plots the estimates for
λ

[S]
(n−5)n and λ

[E]
(n−5)n against the sequence length n of the global alignments, up to n = 40,

every point representing 1000 000 realizations. The horizontal line represents the previous
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Figure 2. Plot of estimates for λ
[S]
0n , λ

[S]
(n−5)n

, λ
[E]
(n−5)n

against sequence length n for the
BLOSUM62 scoring matrix with an affine gap cost of 11 + g for a gap of length g, with random
sequences whose letters are chosen according to the empirical Robinson amino acid frequency
(Robinson and Robinson 1991). Each point represents 1000 000 random sequence pairs generated
by importance sampling (Bundschuh 2002b). The error bars indicate standard errors. The dotted
line indicates estimates of λ

[S]
0n ; a solid line, λ

[S]
(n−5)n

; and a thick solid line, λ
[E]
(n−5)n

. The horizontal
line λ = 0.267 represents the previous best estimate of the asymptotic constant λ (Altschul et al
2001).
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Figure 3. Plot of estimates λ∞ obtained via the robust regression method using all �mn ± smn

for 0 � m < n � 50 against different simulation numbers. The horizontal line λ = 0.267 again
indicates the previous best estimate. The robust regression estimate λ∞ using �

[S]
mn is shown with

♦ and solid error bar; λ∞ using �
[E]
mn , with and thick solid line error bar.

best estimate λ ≈ 0.267 (Altschul et al 2001). Both λ
[S]
(n−5)n and λ

[E]
(n−5)n appear to converge

geometrically to the line, as predicted in equation (8). Specifically, λ
[E]
(n−5)n crosses the line

λ = 0.267 at n = 28; λ
[S]
(n−5)n, at n = 24. In contrast, λ

[S]
0n is still far away from the line at

n = 40 and only crosses it at n = 122 (data not shown). In fact, λ
[E]
(n−5)n appears to converge

to 0.2667, which is consistent with the previous best estimate λ ≈ 0.267. Because En

incorporates more information from the simulation and so presumably has a smaller variance
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than Sn, λ
[E]
(n−5)n shows less Monte Carlo fluctuation than λ

[S]
(n−5)n. Figure 2 indicates that

equation (7) estimates λ accurately from sequence lengths as short as n = 30.
Figure 3 plots the robust regression estimates of λ∞ with their standard error bars against

different numbers N of realizations. In each case, we estimated λ∞ from all the estimates λmn

for 0 � m < n � n̄ = 50, using the (trivial) regression model in section 2.4, setting a = 2
in Andrews’ influence function. As an estimate, λ[E]

∞ := limm→∞ λ[E]
mn is more accurate than

λ[S]
∞ := limm→∞ λ[S]

mn, but as N → ∞, both converged asymptotically to the Gumbel scale
parameter λ. A 2.8 GHz Pentium 4 processor with 0.5 GB RAM computed λ[E]

∞ for N = 1000
with 1.29% relative error in 5.7 s.

Regression of all our estimates λ[E]
mn yielded λ ≈ 0.2667 ± 0.0004.

4. Discussion

Our paper contains two techniques of general mathematical interest. First, we used Markov
additive processes (MAPs) to provide a heuristic model for global sequence alignment, a
variant of first-passage percolation. Second, we used robust regression to extract asymptotic
parameters without resorting to any ad hoc cut-offs. Here, we examine some consequences
and generalizations of the two techniques.

Our first technique, the MAP heuristic, might generalize to certain types of physical
models (e.g., first-passage percolation), serving to accelerate convergence to asymptotic
parameters there as well. In the present context, it accelerated the convergence of Bundschuh’s
estimate λ

[S]
0n of the Gumbel scale parameter λ = λ∞. His estimate λ

[S]
0n converges

harmonically, with λ
[S]
0n − λ∞ = O(n−1). Our MAP heuristic provided a simple rationale

for introducing equation (7), based on the Perron–Frobenius theorem about the dominant
eigenvalue of a positive matrix (Seneta 1981). Equation (7) then suggested an examination
of our quantities λ[S]

mn and λ[E]
mn . Both quantities appeared to converge geometrically, with

λmn − λ∞ = (n − m)−1O(εm) as the MAP heuristic predicts, and with λ[E]
mn having smaller

standard error than λ[S]
mn in practice. At a maximum simulated sequence length of n̄ = 24,

λ[S]
mn achieved about the same accuracy as λ

[S]
0n achieved at n̄ = 122. Bundschuh had heuristics

for speeding the computation of λ
[S]
0n (Bundschuh 2002b), and although we did not implement

them, his heuristics apply to λ[S]
mn and λ[E]

mn as well. Our summary estimate of λ, presently the
most accurate one published, is λ ≈ 0.2667 ± 0.0004.

Our second technique, robust regression, can extract asymptotic parameters from
simulation data without using ad hoc cut-offs to define an asymptotic regime. Historically,
robust regression was suggested as a alternative to ordinary least-squares regression, being
preferable if the errors e are not Gaussian, or if occasional outliers (xi, yi) from an
unknown distribution contaminate the data (Huber 1964, 1973). In asymptotic regression,
the data collected outside the asymptotic regime can be regarded as contaminating outliers.
Interestingly, Internet searches on keywords like ‘robust regression’ and ‘asymptotic analysis’
did not return any examples of robust asymptotic regression. Thus, while robust regression
was originally developed with other aims in mind and appears not to have been applied to
asymptotic regression, the results suggest that it is admirably suited to this application.

Consider a general asymptotic regression problem: some simulation data points
(xi, yi ± si) (i = 0, . . . , m) are collected to fit an asymptotic series y := y(x) =∑n

j=0 φj (x)βj + e, where φi+1(x) = o{φi(x)} (j = 0, . . . , n) and e = O{φn+1(x)} (Erdélyi
1956). Define the m × n matrix X = [φj (xi)] and apply the robust regression model y =
Xβ+e with the Andrews influence function and a = 2. If a residual ei = O{φn+1(xi)} exceeds
2π times the simulation spread si , the point (xi, yi ± si) has no influence in robust regression,
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in accord with ad hoc intuition. Step-wise robust asymptotic regressions, where {β1, . . . , βj }
is estimated before βj+1, are also possible.

In a typical robust regression, the spread si in a data point (xi, yi ± si) is estimated with
a median error rather than a standard error (Montgomery et al 2001), because medians are
less sensitive to an occasional contaminating outlier point. In asymptotic regression, however,
every data point (x, y) with a particular abscissa x = xi has an identical bias. Thus, the
median and standard error defend equally well against these asymptotic biases, i.e., not at
all. In our application, moreover, the median error was expensive to compute. It required
partitioning the realizations from the simulation into, e.g., k equal subsamples, and then
estimating λmn(i) for each subsample (i = 1, . . . , k). With λ̄mn := k−1 ∑k

i=1 λmn(i), median
errors smn := k−1/2 mediani=1,...,k|λ̄mn − λmn(i)| can be estimated. Standard errors can be
estimated analogously. In our application, the approximate standard error from equation (12)
required less computation and performed as well as subsample estimates of the median or
standard error. In robust asymptotic regression, we saw no reason to prefer any measure of
spread to our approximate standard error. Thus, in our application, the only specific adaptation
we made to robust asymptotic regression was measuring spreads with the approximate standard
error.

The typical robust regression algorithm performs sequential weighted least-squares
regressions, iteratively adjusting regression weights according to the current regression
estimates. The iterations can easily contain specific adaptations to asymptotic regression.
Given the current regression estimates, iterations typically adjust the weights independently
for each data point. Robust asymptotic regression might therefore be improved by grouping
points together to reduce the regression influence outside asymptotic regions. Section 2.4
(in the discourse about the influence ψ(e∗

i ) = 0 under the criterion e∗
i > 2π ) hints that

specific adaptations might indeed lead to improvements.
Finally, this paper used global sequence alignments to estimate the scale parameter λ

from the Gumbel distribution in equation (1) for local alignment. We also have methods for
estimating the Gumbel location parameter K from global sequence alignments (manuscript
in preparation). Finally, no rigorous mathematical proof for the Gumbel distribution in
equation (1) is known. We speculate that MAPs will be instrumental in such a proof.
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